des.cpp 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. // Copyright (c) rAthena Dev Teams - Licensed under GNU GPL
  2. // For more information, see LICENCE in the main folder
  3. #include "des.hpp"
  4. /// DES (Data Encryption Standard) algorithm, modified version.
  5. /// @see http://www.eathena.ws/board/index.php?autocom=bugtracker&showbug=5099.
  6. /// @see http://en.wikipedia.org/wiki/Data_Encryption_Standard
  7. /// @see http://en.wikipedia.org/wiki/DES_supplementary_material
  8. /// Bitmask for accessing individual bits of a byte.
  9. static const uint8_t mask[8] = {
  10. 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
  11. };
  12. /// Initial permutation (IP).
  13. static void IP(BIT64* src)
  14. {
  15. BIT64 tmp = {{0}};
  16. static const uint8_t ip_table[64] = {
  17. 58, 50, 42, 34, 26, 18, 10, 2,
  18. 60, 52, 44, 36, 28, 20, 12, 4,
  19. 62, 54, 46, 38, 30, 22, 14, 6,
  20. 64, 56, 48, 40, 32, 24, 16, 8,
  21. 57, 49, 41, 33, 25, 17, 9, 1,
  22. 59, 51, 43, 35, 27, 19, 11, 3,
  23. 61, 53, 45, 37, 29, 21, 13, 5,
  24. 63, 55, 47, 39, 31, 23, 15, 7,
  25. };
  26. size_t i;
  27. for( i = 0; i < ARRAYLENGTH(ip_table); ++i )
  28. {
  29. uint8_t j = ip_table[i] - 1;
  30. if( src->b[(j >> 3) & 7] & mask[j & 7] )
  31. tmp .b[(i >> 3) & 7] |= mask[i & 7];
  32. }
  33. *src = tmp;
  34. }
  35. /// Final permutation (IP^-1).
  36. static void FP(BIT64* src)
  37. {
  38. BIT64 tmp = {{0}};
  39. static const uint8_t fp_table[64] = {
  40. 40, 8, 48, 16, 56, 24, 64, 32,
  41. 39, 7, 47, 15, 55, 23, 63, 31,
  42. 38, 6, 46, 14, 54, 22, 62, 30,
  43. 37, 5, 45, 13, 53, 21, 61, 29,
  44. 36, 4, 44, 12, 52, 20, 60, 28,
  45. 35, 3, 43, 11, 51, 19, 59, 27,
  46. 34, 2, 42, 10, 50, 18, 58, 26,
  47. 33, 1, 41, 9, 49, 17, 57, 25,
  48. };
  49. size_t i;
  50. for( i = 0; i < ARRAYLENGTH(fp_table); ++i )
  51. {
  52. uint8_t j = fp_table[i] - 1;
  53. if( src->b[(j >> 3) & 7] & mask[j & 7] )
  54. tmp .b[(i >> 3) & 7] |= mask[i & 7];
  55. }
  56. *src = tmp;
  57. }
  58. /// Expansion (E).
  59. /// Expands upper four 8-bits (32b) into eight 6-bits (48b).
  60. static void E(BIT64* src)
  61. {
  62. BIT64 tmp = {{0}};
  63. if( false )
  64. {// original
  65. static const uint8_t expand_table[48] = {
  66. 32, 1, 2, 3, 4, 5,
  67. 4, 5, 6, 7, 8, 9,
  68. 8, 9, 10, 11, 12, 13,
  69. 12, 13, 14, 15, 16, 17,
  70. 16, 17, 18, 19, 20, 21,
  71. 20, 21, 22, 23, 24, 25,
  72. 24, 25, 26, 27, 28, 29,
  73. 28, 29, 30, 31, 32, 1,
  74. };
  75. size_t i;
  76. for( i = 0; i < ARRAYLENGTH(expand_table); ++i )
  77. {
  78. uint8_t j = expand_table[i] - 1;
  79. if( src->b[j / 8 + 4] & mask[j % 8] )
  80. tmp .b[i / 6 + 0] |= mask[i % 6];
  81. }
  82. }
  83. else
  84. {// optimized
  85. tmp.b[0] = ((src->b[7]<<5) | (src->b[4]>>3)) & 0x3f; // ..0 vutsr
  86. tmp.b[1] = ((src->b[4]<<1) | (src->b[5]>>7)) & 0x3f; // ..srqpo n
  87. tmp.b[2] = ((src->b[4]<<5) | (src->b[5]>>3)) & 0x3f; // ..o nmlkj
  88. tmp.b[3] = ((src->b[5]<<1) | (src->b[6]>>7)) & 0x3f; // ..kjihg f
  89. tmp.b[4] = ((src->b[5]<<5) | (src->b[6]>>3)) & 0x3f; // ..g fedcb
  90. tmp.b[5] = ((src->b[6]<<1) | (src->b[7]>>7)) & 0x3f; // ..cba98 7
  91. tmp.b[6] = ((src->b[6]<<5) | (src->b[7]>>3)) & 0x3f; // ..8 76543
  92. tmp.b[7] = ((src->b[7]<<1) | (src->b[4]>>7)) & 0x3f; // ..43210 v
  93. }
  94. *src = tmp;
  95. }
  96. /// Transposition (P-BOX).
  97. static void TP(BIT64* src)
  98. {
  99. BIT64 tmp = {{0}};
  100. static const uint8_t tp_table[32] = {
  101. 16, 7, 20, 21,
  102. 29, 12, 28, 17,
  103. 1, 15, 23, 26,
  104. 5, 18, 31, 10,
  105. 2, 8, 24, 14,
  106. 32, 27, 3, 9,
  107. 19, 13, 30, 6,
  108. 22, 11, 4, 25,
  109. };
  110. size_t i;
  111. for( i = 0; i < ARRAYLENGTH(tp_table); ++i )
  112. {
  113. uint8_t j = tp_table[i] - 1;
  114. if( src->b[(j >> 3) + 0] & mask[j & 7] )
  115. tmp .b[(i >> 3) + 4] |= mask[i & 7];
  116. }
  117. *src = tmp;
  118. }
  119. /// Substitution boxes (S-boxes).
  120. /// NOTE: This implementation was optimized to process two nibbles in one step (twice as fast).
  121. static void SBOX(BIT64* src)
  122. {
  123. BIT64 tmp = {{0}};
  124. static const uint8_t s_table[4][64] = {
  125. {
  126. 0xef, 0x03, 0x41, 0xfd, 0xd8, 0x74, 0x1e, 0x47, 0x26, 0xef, 0xfb, 0x22, 0xb3, 0xd8, 0x84, 0x1e,
  127. 0x39, 0xac, 0xa7, 0x60, 0x62, 0xc1, 0xcd, 0xba, 0x5c, 0x96, 0x90, 0x59, 0x05, 0x3b, 0x7a, 0x85,
  128. 0x40, 0xfd, 0x1e, 0xc8, 0xe7, 0x8a, 0x8b, 0x21, 0xda, 0x43, 0x64, 0x9f, 0x2d, 0x14, 0xb1, 0x72,
  129. 0xf5, 0x5b, 0xc8, 0xb6, 0x9c, 0x37, 0x76, 0xec, 0x39, 0xa0, 0xa3, 0x05, 0x52, 0x6e, 0x0f, 0xd9,
  130. },{
  131. 0xa7, 0xdd, 0x0d, 0x78, 0x9e, 0x0b, 0xe3, 0x95, 0x60, 0x36, 0x36, 0x4f, 0xf9, 0x60, 0x5a, 0xa3,
  132. 0x11, 0x24, 0xd2, 0x87, 0xc8, 0x52, 0x75, 0xec, 0xbb, 0xc1, 0x4c, 0xba, 0x24, 0xfe, 0x8f, 0x19,
  133. 0xda, 0x13, 0x66, 0xaf, 0x49, 0xd0, 0x90, 0x06, 0x8c, 0x6a, 0xfb, 0x91, 0x37, 0x8d, 0x0d, 0x78,
  134. 0xbf, 0x49, 0x11, 0xf4, 0x23, 0xe5, 0xce, 0x3b, 0x55, 0xbc, 0xa2, 0x57, 0xe8, 0x22, 0x74, 0xce,
  135. },{
  136. 0x2c, 0xea, 0xc1, 0xbf, 0x4a, 0x24, 0x1f, 0xc2, 0x79, 0x47, 0xa2, 0x7c, 0xb6, 0xd9, 0x68, 0x15,
  137. 0x80, 0x56, 0x5d, 0x01, 0x33, 0xfd, 0xf4, 0xae, 0xde, 0x30, 0x07, 0x9b, 0xe5, 0x83, 0x9b, 0x68,
  138. 0x49, 0xb4, 0x2e, 0x83, 0x1f, 0xc2, 0xb5, 0x7c, 0xa2, 0x19, 0xd8, 0xe5, 0x7c, 0x2f, 0x83, 0xda,
  139. 0xf7, 0x6b, 0x90, 0xfe, 0xc4, 0x01, 0x5a, 0x97, 0x61, 0xa6, 0x3d, 0x40, 0x0b, 0x58, 0xe6, 0x3d,
  140. },{
  141. 0x4d, 0xd1, 0xb2, 0x0f, 0x28, 0xbd, 0xe4, 0x78, 0xf6, 0x4a, 0x0f, 0x93, 0x8b, 0x17, 0xd1, 0xa4,
  142. 0x3a, 0xec, 0xc9, 0x35, 0x93, 0x56, 0x7e, 0xcb, 0x55, 0x20, 0xa0, 0xfe, 0x6c, 0x89, 0x17, 0x62,
  143. 0x17, 0x62, 0x4b, 0xb1, 0xb4, 0xde, 0xd1, 0x87, 0xc9, 0x14, 0x3c, 0x4a, 0x7e, 0xa8, 0xe2, 0x7d,
  144. 0xa0, 0x9f, 0xf6, 0x5c, 0x6a, 0x09, 0x8d, 0xf0, 0x0f, 0xe3, 0x53, 0x25, 0x95, 0x36, 0x28, 0xcb,
  145. }
  146. };
  147. size_t i;
  148. for( i = 0; i < ARRAYLENGTH(s_table); ++i )
  149. {
  150. tmp.b[i] = (s_table[i][src->b[i*2+0]] & 0xf0)
  151. | (s_table[i][src->b[i*2+1]] & 0x0f);
  152. }
  153. *src = tmp;
  154. }
  155. /// DES round function.
  156. /// XORs src[0..3] with TP(SBOX(E(src[4..7]))).
  157. static void RoundFunction(BIT64* src)
  158. {
  159. BIT64 tmp = *src;
  160. E(&tmp);
  161. SBOX(&tmp);
  162. TP(&tmp);
  163. src->b[0] ^= tmp.b[4];
  164. src->b[1] ^= tmp.b[5];
  165. src->b[2] ^= tmp.b[6];
  166. src->b[3] ^= tmp.b[7];
  167. }
  168. void des_decrypt_block(BIT64* block)
  169. {
  170. IP(block);
  171. RoundFunction(block);
  172. FP(block);
  173. }
  174. void des_decrypt(unsigned char* data, size_t size)
  175. {
  176. BIT64* p = (BIT64*)data;
  177. size_t i;
  178. for( i = 0; i*8 < size; i += 8 )
  179. des_decrypt_block(p);
  180. }